Animals
Is Rhinoceros Extinct? – What is the Value of Rhino Horn?

Is Rhinoceros Extinct?
If you’re curious about the status of rhinos in the wild, you’ve come to the right place.
The Northern white rhino is no longer in existence, but the Southern black rhino population is thriving. Sadly, the Western black rhino isn’t so lucky.
You might be wondering what’s causing this drastic decline in the population. Well, the answer to this question isn’t so simple. It all comes down to how humans have been destroying their habitat.
This article explores some of the threats rhinoceros face, and how to protect them.
Northern white rhinos are extinct
The population of the northern white rhino was around 2,360 in the 1960s. But widespread poaching and civil wars wiped out nearly 90% of the population.
By the 1990s, only 15 Northern white rhinos were left in the Garamba National Park in the DRC.
Only after joint international rescue action and strict protection did the rhino population begin to increase again. The population then stabilized at about 30 in 1994. In July 2003, the population was estimated to be only about 200.
Scientists at the Scripps Research Institute in La Jolla, California, have discovered that the northern white rhinos contain stem cells that can turn into other animal cell types.
By triggering these stem cells to produce gametes, researchers hope to be able to revive the species.
The scientists also hope to use this technique to revive other species of endangered animals. However, this method is not a fool-proof solution.
Southern white rhino population is thriving
A consortium of research institutes has made it possible to successfully conceive a calf of the southern white rhino using northern white rhino embryos.
The consortium, called BioRescue, consists of the Leibniz Institute for Zoo and Wildlife Research in Germany, Safari Park Dvur Kralove in the Czech Republic, and the Ol Pejeta Conservancy in Kenya.
In July, the group announced that it had created 12 embryos from the northern white rhino’s eggs. This is a huge step forward for this endangered species, which is facing a dwindling population in its natural habitat.
While some scientists argue that these efforts have failed, others believe they are working. The conservation efforts have helped create a number of embryos from the skin cells of dead rhinos.
The research, known as “reproductive cell curing,” will allow scientists to help the long-term survival of the rhino population.
This research will also allow scientists to use genetic material from long-dead rhinos in their breeding programs. While this is expensive, it will help protect the southern white rhino from extinction and ensure that its population continues to grow.
Eastern-black rhinos are endangered
Despite recent progress in conservation efforts, eastern-black rhinos remain endangered. Illegal poaching remains the number one threat to rhinos in East Africa.
Fortunately, a concerted conservation effort in Kenya, which is home to 80% of eastern black rhinos, has stabilized or increased their numbers.
The Ol Pejeta Conservancy in Kenya is one such conservation effort. The organization is a partner with the Tanzania Wildlife Management Authority, and works to increase rhino populations in the park.
While adult male black rhinos are semi-social at waterholes, they are not particularly social. In general, they maintain a 3.9-4.7 km-wide territory.
Males tend to be dominant and younger individuals are subordinate, while females usually stay in the company of their latest calf.
Their poor eyesight prevents them from displaying their social skills in public, but they communicate with one another through scent-marking.
Western black rhinos are not so fortunate
The western black rhino is one of the last of the five subspecies of black rhinos. It was hunted to near extinction for its horns.
Despite its poor eyesight, this species had a remarkably good sense of smell and hearing.
Unfortunately, it’s not so fortunate in Cameroon. This African nation has faced many problems including corruption, unrest, and currency devaluation.
There are many ways to protect these animals, but sadly, the biggest problem is poaching. The western black rhino is more valuable when dead than alive.
A kilogram of horn can fetch $100,000. It is also valued as a symbol of wealth, and has been used in traditional Chinese medicine for over 2,000 years.
It has been used to treat rheumatism and fever, and Vietnamese and Yemeni people have even used it as a material to make ceremonial knife handles.
Value of rhino horn on the black market
The value of rhino horn on the black market is astronomical. One kilogram of rhino horn can sell for more than US$400,000.
The horns, which are mainly found in Asia, can weigh from one to three kilograms each. Its use is primarily for traditional medicine, with the horn said to relieve hangovers, cleanse the body, and alleviate high fever.
It is also often supplied to the art and antiques trade in China, which can fetch several hundred dollars per kilogram.
While it is illegal to trade rhino horn, its value on the black market is astronomical.
Many journalists, particularly in the quality press, often quote this figure in their articles.
As a result, many journalists fail to mention that the value of rhino horn is only worth $100,000 USD per kilogram. This is far more expensive than the price of platinum.
Nevertheless, this value is often quoted in articles about rhino poaching.
Threats to rhinoceros
Despite their charisma and dazzling beauty, the rhinoceros faces numerous threats. The dwindling budgets of range-state governments have a negative impact on conservation efforts.
Furthermore, rhinoceros are increasingly vulnerable to poaching by well-armed gangs.
Insufficient funding for conservation law enforcement agencies has increased rhino poaching threats.
One of the major threats to rhinoceros is habitat loss and extensive poaching, which began in the early 1800s.
Seismic activity on Java threatens the Rhinoceros sondaicus population. However, the Asian Rhino Specialist Group has established a plan to increase its population, including relocation of individuals.
Natural reproduction has not been studied in the Viet Nam population, so the remaining individuals may be the same sex or too old to reproduce.
Fact check…
We hope you enjoyed this article… What are your thoughts on Is Rhinoceros Extinct?
Рleаse let us knоw yоur thоughts in the соmments seсtiоn. Feel free to share with us in the comments section below.
Animals
The Impact of Human Activity on Wildlife: A Call for Urgent Conservation
Animals
The Science of Animal Intelligence: Unraveling the Depths of Animal Cognition

The question of animal intelligence has fascinated scientists, philosophers, and the general public for centuries. How smart are animals, really? What do they understand about the world around them, and how do they interact with it?
In recent years, advances in fields such as cognitive ethology, neuroscience, and comparative psychology have provided fascinating insights into the minds of animals, challenging our traditional views and revealing a complex tapestry of intelligence across the animal kingdom.
Defining Animal Intelligence
Before delving into the specifics of animal intelligence, it’s essential to define what we mean by “intelligence.” In humans, intelligence is often measured by metrics such as IQ tests, which assess abilities like logical reasoning, problem-solving, and linguistic skills. However, these metrics are not universally applicable to animals, as their cognitive abilities and behaviors are shaped by their unique ecological niches and evolutionary histories.
A Broad Spectrum of Abilities
Animal intelligence encompasses a broad spectrum of abilities, including:
- Problem-solving: The ability to find solutions to novel challenges.
- Social cognition: Understanding and navigating social interactions.
- Communication: The ability to convey information to others.
- Tool use: The use of objects to achieve a goal.
- Self-awareness: Recognition of oneself as an individual distinct from the environment.
- Memory: The ability to store and retrieve information.
- Learning: The process of acquiring new information or behaviors.
Evidence of Animal Intelligence
1. Problem-Solving and Tool Use
One of the most compelling pieces of evidence for animal intelligence is the ability of certain species to solve problems and use tools. This behavior has been observed in a variety of animals, from primates to birds to invertebrates.
Case Study: The New Caledonian Crow
The New Caledonian crow is renowned for its remarkable tool-using abilities. These crows fashion tools from leaves and twigs to extract insects from crevices, demonstrating a level of problem-solving and innovation that rivals that of some primates.
Case Study: The Octopus
Octopuses are also known for their problem-solving skills and dexterity. They have been observed using coconut shells and other objects as shelters and even opening jars to obtain food.
2. Social Cognition and Communication
Social animals, such as primates, dolphins, and elephants, exhibit complex social behaviors that require a high degree of social cognition. This includes the ability to understand and respond to the emotions and intentions of others, as well as the use of sophisticated communication systems.
Case Study: The African Elephant
African elephants have a complex social structure and communicate using a variety of vocalizations, body language, and even seismic signals. They are also capable of empathy and have been observed comforting distressed individuals.
Case Study: The Bottlenose Dolphin
Bottlenose dolphins are highly social animals with a sophisticated communication system that includes whistles, clicks, and body movements. They also exhibit behaviors such as cooperative hunting and the use of sponges as tools, indicating a high level of intelligence.
3. Memory and Learning
The ability to remember information and learn from experience is a hallmark of intelligence. Many animals demonstrate impressive memory and learning abilities, often surpassing those of humans in specific contexts.
Case Study: The Clark’s Nutcracker
The Clark’s nutcracker, a bird native to North America, has an exceptional memory for the location of food caches. It can remember the location of thousands of seeds, even under snow, and retrieve them months later.
Case Study: The Honeybee
Honeybees exhibit complex learning and memory abilities, including the ability to remember the location of food sources and communicate this information to other bees through the waggle dance. They also demonstrate associative learning, a form of learning in which an association is made between two stimuli.
4. Self-Awareness and Consciousness
The concept of self-awareness, or the ability to recognize oneself as an individual distinct from the environment, is a contentious topic in animal intelligence. However, some species have demonstrated behaviors that suggest a level of self-awareness.
Case Study: The Bottlenose Dolphin
Bottlenose dolphins have passed the mirror self-recognition test, a test used to assess self-awareness in animals. This suggests that they have a concept of self and are capable of self-reflection.
Case Study: The Great Ape
Great apes, such as chimpanzees, gorillas, and orangutans, have also passed the mirror self-recognition test, indicating a level of self-awareness.
The Implications of Animal Intelligence
Rethinking Human Exceptionalism
The evidence of animal intelligence challenges the notion of human exceptionalism, the belief that humans are uniquely intelligent and superior to other animals. This has profound implications for our understanding of the natural world and our place within it.
Ethical Considerations
Recognizing the intelligence of animals also raises ethical considerations regarding their treatment. If animals are capable of complex thought and emotion, does that change how we should treat them? This question is at the heart of the animal rights and welfare movements.
Conservation Implications
Understanding animal intelligence can also inform conservation efforts. For example, recognizing the social complexity of certain species can influence how we approach their protection and management.
Frequently Asked Questions (FAQs)
1. What is the most intelligent animal?
While it’s difficult to rank animals by intelligence, some of the most intelligent species include chimpanzees, dolphins, elephants, and crows. These animals exhibit a range of cognitive abilities, including problem-solving, social cognition, and communication.
2. Can animals think or reason?
Yes, many animals are capable of thinking and reasoning, although the extent and nature of their cognitive abilities vary. For example, primates, dolphins, and crows have been shown to solve problems, use tools, and learn from experience.
3. Do animals have emotions?
There is growing evidence that animals experience a range of emotions, including joy, fear, sadness, and empathy. For example, elephants have been observed comforting distressed individuals, and dogs show signs of separation anxiety when separated from their owners.
4. How do we measure animal intelligence?
Measuring animal intelligence is challenging due to the diversity of cognitive abilities across species. Methods include behavioral observations, problem-solving tasks, and tests of memory and learning. However, these methods are not without limitations and must be interpreted with caution.
5. What is the role of animal intelligence in conservation?
Understanding animal intelligence can inform conservation efforts by providing insights into the behavior, social structure, and ecological needs of species. This information can help guide the development of effective conservation strategies and management practices.
Conclusion: A New Understanding of Animal Intelligence
The science of animal intelligence is a rapidly evolving field that continues to challenge our perceptions and deepen our understanding of the natural world. As we uncover more about the cognitive abilities of animals, we are forced to reconsider our place in the animal kingdom and the ethical implications of our actions. By recognizing the intelligence and complexity of animals, we can foster a greater appreciation for the diversity of life and work towards a more compassionate and sustainable future.
References
Links
Animals
The Enigma of Animal Migration: Understanding the Hows and Whys of Nature’s Great Journeys

Animal migration is one of the most awe-inspiring phenomena in the natural world. Each year, billions of animals embark on epic journeys across land, sea, and air, traversing thousands of miles in search of food, mates, and suitable breeding grounds.
These migrations are not only a testament to the resilience and adaptability of wildlife but also a critical component of the Earth’s ecosystems. In this article, we delve into the mysteries of animal migration, exploring the mechanisms that drive these incredible journeys and the reasons behind them.
The Mechanisms of Migration
Navigation and Orientation
One of the most fascinating aspects of animal migration is the ability of species to navigate vast distances with remarkable precision. Over the years, scientists have uncovered several mechanisms that animals use to find their way.
Celestial Cues
Many migratory species rely on celestial cues, such as the position of the sun, moon, and stars, to orient themselves. For example, birds like the indigo bunting use the position of the setting sun to determine their direction of travel.
Magnetic Fields
The Earth’s magnetic field is another critical navigational tool for many migratory animals. Species such as sea turtles, salmon, and certain birds have magnetoreceptors that allow them to detect magnetic fields and use them for navigation. This ability, known as magnetoreception, is still not fully understood but is believed to involve the presence of magnetite, a magnetic mineral, in the animals’ bodies.
Olfactory Cues
Some animals also use olfactory cues, or scents, to navigate. For instance, salmon can detect the unique chemical signature of their natal streams, guiding them back to their spawning grounds.
Physiological Adaptations
Migration often requires significant energy expenditure, and migratory species have evolved various physiological adaptations to cope with the demands of long-distance travel.
Fat Reserves
Many migratory animals, such as birds and whales, build up large fat reserves before embarking on their journeys. These reserves provide the energy needed to sustain them during migration. For example, the blackpoll warbler, a small songbird, doubles its body weight in preparation for its non-stop, transatlantic flight from North America to South America.
Muscle Hypertrophy
Migratory species also undergo muscle hypertrophy, or the enlargement of muscle fibers, to increase their strength and endurance. This is particularly important for species that undertake long flights or swim great distances, such as the Arctic tern, which travels from the Arctic to the Antarctic and back each year.
Behavioral Adaptations
In addition to physiological changes, migratory animals exhibit various behavioral adaptations to facilitate their journeys.
Group Travel
Many species migrate in groups, which can provide several advantages. Traveling in flocks or herds can offer protection from predators, improve navigation, and conserve energy through aerodynamic or hydrodynamic benefits. For example, the wildebeest migration in the Serengeti involves over a million animals traveling together in a coordinated manner.
Stopover Sites
Migratory animals often rely on stopover sites, or rest areas, along their migration routes. These sites provide essential resources, such as food and water, and allow animals to rest and replenish their energy reserves. The red knot, a shorebird, relies on stopover sites along the East Coast of the United States to refuel during its migration from the Arctic to South America.
The Reasons Behind Migration
Food and Resources
One of the primary reasons animals migrate is to access food and other resources. As seasons change, the availability of food can vary significantly, and migration allows animals to exploit resources that are not available year-round.
Case Study: The Monarch Butterfly
The monarch butterfly migrates from North America to Mexico to escape the cold winter months. During their journey, they rely on the availability of milkweed, the only plant on which their caterpillars feed. By migrating, monarchs can take advantage of the seasonal abundance of milkweed in different regions.
Breeding and Reproduction
Migration is also closely linked to breeding and reproduction. Many species migrate to specific breeding grounds where conditions are favorable for raising offspring.
Case Study: The Arctic Tern
The Arctic tern holds the record for the longest migration of any animal, traveling from the Arctic to the Antarctic and back each year. This journey is driven by the need to access the abundant food resources in the polar regions during the summer months, which provides ideal conditions for breeding and raising chicks.
Avoiding Predators and Harsh Conditions
Migration can also be a strategy for avoiding predators and harsh environmental conditions. By moving to different areas, animals can reduce the risk of predation and escape unfavorable conditions, such as extreme temperatures or drought.
Case Study: The Wildebeest Migration
The wildebeest migration in the Serengeti is a prime example of migration as a survival strategy. Each year, over a million wildebeest, along with hundreds of thousands of zebras and gazelles, migrate in search of fresh grazing lands. This journey is driven by the need to avoid predators and find areas with sufficient food and water.
The Impact of Climate Change on Migration
Altered Migration Patterns
Climate change is having a significant impact on animal migration, with many species altering their migration patterns in response to changing environmental conditions. For example, warmer temperatures can cause animals to migrate earlier or later than usual, or to take different routes.
Case Study: The European Robin
The European robin has been observed migrating earlier in the spring due to rising temperatures. This shift in migration timing can have implications for breeding success, as the availability of food and other resources may not align with the birds’ arrival.
Habitat Loss and Fragmentation
Climate change is also contributing to habitat loss and fragmentation, which can disrupt migration routes and make it more difficult for animals to find suitable stopover sites. This can have serious consequences for migratory species, as they rely on these sites for rest and refueling.
Case Study: The Red Knot
The red knot, a migratory shorebird, is experiencing habitat loss and fragmentation along its migration route due to climate change and human development. This has led to declines in the species’ population, as it struggles to find the resources it needs to complete its journey.
Changes in Resource Availability
As climate change alters ecosystems, the availability of resources, such as food and water, is also changing. This can affect the timing and success of migration, as animals may not be able to find the resources they need when they need them.
Case Study: The Salmon Migration
Salmon migration is closely tied to the availability of food and water. However, climate change is causing changes in river flows and water temperatures, which can affect the timing of salmon runs and the availability of food. This can lead to declines in salmon populations and disruptions in the food webs that depend on them.
Conclusion: The Future of Animal Migration
The mystery of animal migration is a testament to the complexity and beauty of the natural world. However, as climate change continues to reshape ecosystems, the future of migration is uncertain. By understanding the mechanisms and reasons behind migration, and by taking action to mitigate the impacts of climate change, we can help ensure the survival of migratory species and the ecosystems they inhabit.
Frequently Asked Questions (FAQs)
1. What is the longest migration in the animal kingdom?
The Arctic tern holds the record for the longest migration, traveling from the Arctic to the Antarctic and back each year, covering a distance of over 70,000 kilometers.
2. How do animals know when to migrate?
Animals use a variety of cues to determine when to migrate, including changes in day length, temperature, and food availability. Some species also have an internal biological clock that helps regulate their migration timing.
3. Can animals migrate if their habitats are destroyed?
While some animals may be able to adapt to changes in their habitats, the destruction of critical habitats can disrupt migration routes and make it difficult for animals to complete their journeys. This can have serious consequences for migratory species, as they rely on specific areas for rest, refueling, and breeding.
4. What are the benefits of migration for animals?
Migration allows animals to access resources that are not available year-round, such as food and breeding grounds. It also helps them avoid predators and harsh environmental conditions, increasing their chances of survival.
5. How can we help protect migratory species?
Protecting migratory species requires a combination of habitat conservation, sustainable resource management, and international cooperation. By preserving critical habitats, reducing pollution, and addressing the impacts of climate change, we can help ensure the survival of migratory species and the ecosystems they inhabit.
References
-
Other Pets4 years ago
Why Mоnkeys like bаnаnаs? – Dо Mоnkeys eаt bаnаnа рeels? Top Facts
-
Animals3 years ago
Top 10 Most Popular Rabbit Breeds In The World
-
Fun Facts4 years ago
Top 30 animals with glowing eyes at night – Red, Yellow, Green and more..
-
Dogs3 years ago
Top 10 Most Expensive Dog Breeds In The World: Why are they Expensive?
-
Dogs3 years ago
Why Yоur Dоg Liсks Their Nоse аnd How tо Stор It. (Explained)
-
Fun Facts4 years ago
10 Animals That Do Not make any Sounds (Why are they so silent)
-
Pets2 years ago
Nationwide Pet Insurance vs Trupanion: Which Is Best?
-
Fish4 years ago
How Do Jellyfish Eat Food?, What do They Eat? + How they digest food